Ismaël Septembre

Post-doctoral researcher in theoretical quantum physics



Contact

Ismaël Septembre webpage

Post-doctoral researcher


Curriculum vitae



Theoretical quantum optics group, Otfried Gühne

University of Siegen, Germany




Ismaël Septembre

Post-doctoral researcher in theoretical quantum physics



Theoretical quantum optics group, Otfried Gühne

University of Siegen, Germany



Weyl singularities in polaritonic multiterminal Josephson junctions


Journal article


I. Septembre, J. S. Meyer, D. D. Solnyshkov, G. Malpuech
Physical Review B

Semantic Scholar ArXiv DOI
Cite

Cite

APA   Click to copy
Septembre, I., Meyer, J. S., Solnyshkov, D. D., & Malpuech, G. Weyl singularities in polaritonic multiterminal Josephson junctions. Physical Review B.


Chicago/Turabian   Click to copy
Septembre, I., J. S. Meyer, D. D. Solnyshkov, and G. Malpuech. “Weyl Singularities in Polaritonic Multiterminal Josephson Junctions.” Physical Review B (n.d.).


MLA   Click to copy
Septembre, I., et al. “Weyl Singularities in Polaritonic Multiterminal Josephson Junctions.” Physical Review B.


BibTeX   Click to copy

@article{i-a,
  title = {Weyl singularities in polaritonic multiterminal Josephson junctions},
  journal = {Physical Review B},
  author = {Septembre, I. and Meyer, J. S. and Solnyshkov, D. D. and Malpuech, G.}
}

Abstract

We study theoretically analog multi-terminal Josephson junctions formed by gapped superfluids created upon resonant pumping of cavity exciton-polaritons. We study the $p$-like bands of a 5-terminal junction in the 4D parameter space created by the superfluid phases acting as quasi-momenta. We find 4/6 Weyl points in 3D subspaces with preserved/broken time-reversal symmetry. We link the real space topology (vortices) to the parameter space one (Weyl points). We derive an effective Hamiltonian encoding the creation, motion, and annihilation of Weyl nodes in 4D. Our work paves the way to the study of exotic topological phases in a platform allowing direct measurement of eigenstates and band topology.





Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in